Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Med ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693247

RESUMEN

Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we conducted exome sequencing on a large-scale cohort with clinical manifestations of CP. The study cohort comprised 505 girls and 1,073 boys. Utilizing the current gold standard in genetic diagnostics, 387 of these 1,578 children (24.5%) received genetic diagnoses. We identified 412 pathogenic and likely pathogenic (P/LP) variants across 219 genes associated with neurodevelopmental disorders, and 59 P/LP copy number variants. The genetic diagnostic rate of children with CP labeled at birth with perinatal asphyxia was higher than the rate in children without asphyxia (P = 0.0033). Also, 33 children with CP manifestations (8.5%, 33 of 387) had findings that were clinically actionable. These results highlight the need for early genetic testing in children with CP, especially those with risk factors like perinatal asphyxia, to enable evidence-based medical decision-making.

2.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480682

RESUMEN

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Asunto(s)
Encefalopatías , Humanos , Acetilación , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encefalopatías/genética , Patrón de Herencia , Mutación , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
3.
Brain ; 147(4): 1553-1570, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38128548

RESUMEN

Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery in children. Recent studies have implicated SMARCC1, a component of the BRG1-associated factor (BAF) chromatin remodelling complex, as a candidate congenital hydrocephalus gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, congenital hydrocephalus-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo. Here, we aimed to assess the prevalence of SMARCC1 variants in an expanded patient cohort, describe associated clinical and radiographic phenotypes, and assess the impact of Smarcc1 depletion in a novel Xenopus tropicalis model of congenital hydrocephalus. To do this, we performed a genetic association study using whole-exome sequencing from a cohort consisting of 2697 total ventriculomegalic trios, including patients with neurosurgically-treated congenital hydrocephalus, that total 8091 exomes collected over 7 years (2016-23). A comparison control cohort consisted of 1798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents were sourced from the Simons Simplex Collection. Enrichment and impact on protein structure were assessed in identified variants. Effects on the human fetal brain transcriptome were examined with RNA-sequencing and Smarcc1 knockdowns were generated in Xenopus and studied using optical coherence tomography imaging, in situ hybridization and immunofluorescence. SMARCC1 surpassed genome-wide significance thresholds, yielding six rare, protein-altering de novo variants localized to highly conserved residues in key functional domains. Patients exhibited hydrocephalus with aqueductal stenosis; corpus callosum abnormalities, developmental delay, and cardiac defects were also common. Xenopus knockdowns recapitulated both aqueductal stenosis and cardiac defects and were rescued by wild-type but not patient-specific variant SMARCC1. Hydrocephalic SMARCC1-variant human fetal brain and Smarcc1-variant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2. These results suggest de novo variants in SMARCC1 cause a novel human BAFopathy we term 'SMARCC1-associated developmental dysgenesis syndrome', characterized by variable presence of cerebral ventriculomegaly, aqueductal stenosis, developmental delay and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodelling complex for human brain morphogenesis and provide evidence for a 'neural stem cell' paradigm of congenital hydrocephalus pathogenesis. These results highlight utility of trio-based whole-exome sequencing for identifying pathogenic variants in sporadic congenital structural brain disorders and suggest whole-exome sequencing may be a valuable adjunct in clinical management of congenital hydrocephalus patients.


Asunto(s)
Trastorno del Espectro Autista , Acueducto del Mesencéfalo/anomalías , Enfermedades Genéticas Ligadas al Cromosoma X , Hidrocefalia , Niño , Humanos , Trastorno del Espectro Autista/genética , Factores de Transcripción/genética , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/genética , Epigénesis Genética , Proteínas del Ojo/genética , Péptidos y Proteínas de Señalización Intracelular/genética
4.
Genome Med ; 15(1): 102, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031187

RESUMEN

BACKGROUND: Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS: Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS: A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS: Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders".


Asunto(s)
Proteínas , Pez Cebra , Animales , Humanos , Frecuencia de los Genes , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Fenotipo , Proteínas/genética , Pez Cebra/genética
5.
JAMA Netw Open ; 6(11): e2343384, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991765

RESUMEN

Importance: Exome sequencing (ES) has been established as the preferred first line of diagnostic testing for certain neurodevelopmental disorders, such as global developmental delay and autism spectrum disorder; however, current recommendations are not specific to or inclusive of congenital hydrocephalus (CH). Objective: To determine the diagnostic yield of ES in CH and whether ES should be considered as a first line diagnostic test for CH. Data Sources: PubMed, Cochrane Library, and Google Scholar were used to identify studies published in English between January 1, 2010, and April 10, 2023. The following search terms were used to identify studies: congenital hydrocephalus, ventriculomegaly, cerebral ventriculomegaly, primary ventriculomegaly, fetal ventriculomegaly, prenatal ventriculomegaly, molecular analysis, genetic cause, genetic etiology, genetic testing, exome sequencing, whole exome sequencing, genome sequencing, microarray, microarray analysis, and copy number variants. Study Selection: Eligible studies included those with at least 10 probands with the defining feature of CH and/or severe cerebral ventriculomegaly that had undergone ES. Studies with fewer than 10 probands, studies of mild or moderate ventriculomegaly, and studies using genetic tests other than ES were excluded. A full-text review of 68 studies was conducted by 2 reviewers. Discrepancies were resolved by consensus. Data Extraction and Synthesis: Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Meta-Analysis of Observational Studies in Epidemiology guidelines were used by 2 reviewers to extract data. Data were synthesized using a random-effects model of single proportions. Data analysis occurred in April 2023. Main Outcomes and Measures: The primary outcome was pooled diagnostic yield. Additional diagnostic yields were estimated for specific subgroups on the basis of clinical features, syndromic presentation, and parental consanguinity. For each outcome, a 95% CI and estimate of interstudy heterogeneity (I2 statistic) was reported. Results: From 498 deduplicated and screened records, 9 studies with a total of 538 CH probands were selected for final inclusion. The overall diagnostic yield was 37.9% (95% CI, 20.0%-57.4%; I2 = 90.1). The yield was lower for isolated and/or nonsyndromic cases (21.3%; 95% CI, 12.8%-31.0%; I2 = 55.7). The yield was higher for probands with reported consanguinity (76.3%; 95% CI, 65.1%-86.1%; I2 = 0) than those without (16.2%; 95% CI, 12.2%-20.5%; I2 = 0). Conclusions and Relevance: In this systematic review and meta-analysis of the diagnostic yield of ES in CH, the diagnostic yield was concordant with that of previous recommendations for other neurodevelopmental disorders, suggesting that ES should also be recommended as a routine diagnostic adjunct for patients with CH.


Asunto(s)
Trastorno del Espectro Autista , Hidrocefalia , Femenino , Embarazo , Humanos , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Secuenciación del Exoma , Patología Molecular , Pacientes , Hidrocefalia/diagnóstico , Hidrocefalia/genética
6.
Trends Mol Med ; 29(12): 1059-1075, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37802664

RESUMEN

Chiari malformation type 1 (CM1) is the most common structural brain disorder involving the craniocervical junction, characterized by caudal displacement of the cerebellar tonsils below the foramen magnum into the spinal canal. Despite the heterogeneity of CM1, its poorly understood patho-etiology has led to a 'one-size-fits-all' surgical approach, with predictably high rates of morbidity and treatment failure. In this review we present multiplex CM1 families, associated Mendelian syndromes, and candidate genes from recent whole exome sequencing (WES) and other genetic studies that suggest a significant genetic contribution from inherited and de novo germline variants impacting transcription regulation, craniovertebral osteogenesis, and embryonic developmental signaling. We suggest that more extensive WES may identify clinically relevant, genetically defined CM1 subtypes distinguished by unique neuroradiographic and neurophysiological endophenotypes.


Asunto(s)
Malformación de Arnold-Chiari , Encefalopatías , Humanos , Malformación de Arnold-Chiari/genética , Malformación de Arnold-Chiari/complicaciones , Malformación de Arnold-Chiari/cirugía , Foramen Magno , Genética Humana , Imagen por Resonancia Magnética
9.
JAMA Pediatr ; 177(5): 472-478, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36877506

RESUMEN

Importance: Exome sequencing is a first-tier diagnostic test for individuals with neurodevelopmental disorders, including intellectual disability/developmental delay and autism spectrum disorder; however, this recommendation does not include cerebral palsy. Objective: To evaluate if the diagnostic yield of exome or genome sequencing in cerebral palsy is similar to that of other neurodevelopmental disorders. Data Sources: The study team searched PubMed for studies published between 2013 and 2022 using cerebral palsy and genetic testing terms. Data were analyzed during March 2022. Study Selection: Studies performing exome or genome sequencing in at least 10 participants with cerebral palsy were included. Studies with fewer than 10 individuals and studies reporting variants detected by other genetic tests were excluded. Consensus review was performed. The initial search identified 148 studies, of which 13 met inclusion criteria. Data Extraction and Synthesis: Data were extracted by 2 investigators and pooled using a random-effects meta-analysis. Incidence rates with corresponding 95% CIs and prediction intervals were calculated. Publication bias was evaluated by the Egger test. Variability between included studies was assessed via heterogeneity tests using the I2 statistic. Main Outcomes and Measures: The primary outcome was the pooled diagnostic yield (rate of pathogenic/likely pathogenic variants) across studies. Subgroup analyses were performed based on population age and on the use of exclusion criteria for patient selection. Results: Thirteen studies were included consisting of 2612 individuals with cerebral palsy. The overall diagnostic yield was 31.1% (95% CI, 24.2%-38.6%; I2 = 91%). The yield was higher in pediatric populations (34.8%; 95% CI, 28.3%-41.5%) than adult populations (26.9%; 95% CI, 1.2%-68.8%) and higher among studies that used exclusion criteria for patient selection (42.1%; 95% CI, 36.0%-48.2%) than those that did not (20.7%; 95% CI, 12.3%-30.5%). Conclusions and Relevance: In this systematic review and meta-analysis, the genetic diagnostic yield in cerebral palsy was similar to that of other neurodevelopmental disorders for which exome sequencing is recommended as standard of care. Data from this meta-analysis provide evidence to support the inclusion of cerebral palsy in the current recommendation of exome sequencing in the diagnostic evaluation of individuals with neurodevelopmental disorders.


Asunto(s)
Trastorno del Espectro Autista , Parálisis Cerebral , Niño , Adulto , Humanos , Secuenciación del Exoma , Pruebas Genéticas , Genómica
10.
Nat Med ; 29(3): 667-678, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36879130

RESUMEN

Cerebral arachnoid cysts (ACs) are one of the most common and poorly understood types of developmental brain lesion. To begin to elucidate AC pathogenesis, we performed an integrated analysis of 617 patient-parent (trio) exomes, 152,898 human brain and mouse meningeal single-cell RNA sequencing transcriptomes and natural language processing data of patient medical records. We found that damaging de novo variants (DNVs) were highly enriched in patients with ACs compared with healthy individuals (P = 1.57 × 10-33). Seven genes harbored an exome-wide significant DNV burden. AC-associated genes were enriched for chromatin modifiers and converged in midgestational transcription networks essential for neural and meningeal development. Unsupervised clustering of patient phenotypes identified four AC subtypes and clinical severity correlated with the presence of a damaging DNV. These data provide insights into the coordinated regulation of brain and meningeal development and implicate epigenomic dysregulation due to DNVs in AC pathogenesis. Our results provide a preliminary indication that, in the appropriate clinical context, ACs may be considered radiographic harbingers of neurodevelopmental pathology warranting genetic testing and neurobehavioral follow-up. These data highlight the utility of a systems-level, multiomics approach to elucidate sporadic structural brain disease.


Asunto(s)
Quistes Aracnoideos , Multiómica , Humanos , Animales , Ratones , Quistes Aracnoideos/diagnóstico por imagen , Quistes Aracnoideos/genética , Encéfalo/diagnóstico por imagen , Exoma/genética , Pruebas Genéticas
11.
J Neurosurg Case Lessons ; 5(10)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36880508

RESUMEN

BACKGROUND: Hirayama disease, a cervical myelopathy characterized most commonly by a self-limiting atrophic weakness of the upper extremities, is a rare entity, scarcely reported in the literature. Diagnosis is made by spinal magnetic resonance imaging (MRI), which typically shows loss of normal cervical lordosis, anterior displacement of the cord during flexion, and a large epidural cervical fat pad. Treatment options include observation or cervical immobilization by collar or surgical decompression and fusion. OBSERVATIONS: Here, the authors report an unusual case of a Hirayama-like disease in a young White male athlete who presented with rapidly progressive paresthesia in all 4 extremities and no weakness. Imaging showed characteristic findings of Hirayama disease as well as worsened cervical kyphosis and spinal cord compression in cervical neck extension, which has not previously been reported. Two-level anterior cervical discectomy and fusion and posterior spinal fusion improved both cervical kyphosis on extension and symptoms. LESSONS: Given the disease's self-limiting nature, and a lack of current reporting, there remains no consensus on how to manage these patients. Such findings presented here demonstrate the potentially heterogeneous MRI findings that can be observed in Hirayama disease and emphasize the utility of aggressive surgical management in young, active patients whereby a cervical collar may not be tolerated.

12.
medRxiv ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993720

RESUMEN

Importance: Hydrocephalus, characterized by cerebral ventriculomegaly, is the most common disorder requiring brain surgery. A few familial forms of congenital hydrocephalus (CH) have been identified, but the cause of most sporadic cases of CH remains elusive. Recent studies have implicated SMARCC1 , a component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, as a candidate CH gene. However, SMARCC1 variants have not been systematically examined in a large patient cohort or conclusively linked with a human syndrome. Moreover, CH-associated SMARCC1 variants have not been functionally validated or mechanistically studied in vivo . Objectives: The aims of this study are to (i) assess the extent to which rare, damaging de novo mutations (DNMs) in SMARCC1 are associated with cerebral ventriculomegaly; (ii) describe the clinical and radiographic phenotypes of SMARCC1 -mutated patients; and (iii) assess the pathogenicity and mechanisms of CH-associated SMARCC1 mutations in vivo . Design setting and participants: A genetic association study was conducted using whole-exome sequencing from a cohort consisting of 2,697 ventriculomegalic trios, including patients with neurosurgically-treated CH, totaling 8,091 exomes collected over 5 years (2016-2021). Data were analyzed in 2023. A comparison control cohort consisted of 1,798 exomes from unaffected siblings of patients with autism spectrum disorder and their unaffected parents sourced from the Simons simplex consortium. Main outcomes and measures: Gene variants were identified and filtered using stringent, validated criteria. Enrichment tests assessed gene-level variant burden. In silico biophysical modeling estimated the likelihood and extent of the variant impact on protein structure. The effect of a CH-associated SMARCC1 mutation on the human fetal brain transcriptome was assessed by analyzing RNA-sequencing data. Smarcc1 knockdowns and a patient-specific Smarcc1 variant were tested in Xenopus and studied using optical coherence tomography imaging, in situ hybridization, and immunofluorescence microscopy. Results: SMARCC1 surpassed genome-wide significance thresholds in DNM enrichment tests. Six rare protein-altering DNMs, including four loss-of-function mutations and one recurrent canonical splice site mutation (c.1571+1G>A) were detected in unrelated patients. DNMs localized to the highly conserved DNA-interacting SWIRM, Myb-DNA binding, Glu-rich, and Chromo domains of SMARCC1 . Patients exhibited developmental delay (DD), aqueductal stenosis, and other structural brain and heart defects. G0 and G1 Smarcc1 Xenopus mutants exhibited aqueductal stenosis and cardiac defects and were rescued by human wild-type SMARCC1 but not a patient-specific SMARCC1 mutant. Hydrocephalic SMARCC1 -mutant human fetal brain and Smarcc1 -mutant Xenopus brain exhibited a similarly altered expression of key genes linked to midgestational neurogenesis, including the transcription factors NEUROD2 and MAB21L2 . Conclusions: SMARCC1 is a bona fide CH risk gene. DNMs in SMARCC1 cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)", characterized by cerebral ventriculomegaly, aqueductal stenosis, DD, and a variety of structural brain or cardiac defects. These data underscore the importance of SMARCC1 and the BAF chromatin remodeling complex for human brain morphogenesis and provide evidence for a "neural stem cell" paradigm of human CH pathogenesis. These results highlight the utility of trio-based WES for identifying risk genes for congenital structural brain disorders and suggest WES may be a valuable adjunct in the clinical management of CH patients. KEY POINTS: Question: What is the role of SMARCC1 , a core component of the B RG1- a ssociated factor (BAF) chromatin remodeling complex, in brain morphogenesis and congenital hydrocephalus (CH)? Findings: SMARCC1 harbored an exome-wide significant burden of rare, protein-damaging de novo mutations (DNMs) (p = 5.83 × 10 -9 ) in the largest ascertained cohort to date of patients with cerebral ventriculomegaly, including treated CH (2,697 parent-proband trios). SMARCC1 contained four loss-of-function DNMs and two identical canonical splice site DNMs in a total of six unrelated patients. Patients exhibited developmental delay, aqueductal stenosis, and other structural brain and cardiac defects. Xenopus Smarcc1 mutants recapitulated core human phenotypes and were rescued by the expression of human wild-type but not patient-mutant SMARCC1 . Hydrocephalic SMARCC1 -mutant human brain and Smarcc1 -mutant Xenopus brain exhibited similar alterationsin the expression of key transcription factors that regulate neural progenitor cell proliferation. Meaning: SMARCC1 is essential for human brain morphogenesis and is a bona fide CH risk gene. SMARCC1 mutations cause a novel human BAFopathy we term " S MARCC1- a ssociated D evelopmental D ysgenesis S yndrome (SaDDS)". These data implicate epigenetic dysregulation of fetal neural progenitors in the pathogenesis of hydrocephalus, with diagnostic and prognostic implications for patients and caregivers.

13.
Genet Med ; 25(1): 151-154, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36609147

RESUMEN

PURPOSE: Recurrent 16p11.2 duplications produce a wide range of clinical outcomes with varying effects on cognition and social functioning. Family-based studies of copy number variants (CNVs) have revealed significant contributions of genomic background on variable expressivity. In this study, we measured the phenotypic effect of 16p11.2 duplications and quantified the modulating effect of familial background on cognitive and social outcomes. METHODS: Genomic and clinical data were ascertained from 41 probands with a 16p11.2 duplication and their first-degree relatives. Paired comparisons were completed to determine the duplication's effect on expected vs actual performance on standardized tests of intelligence (IQ) and social functioning (Social Responsiveness Scale-2). Intraclass correlations between relatives and probands were also calculated. RESULTS: Cognitive and social functioning were significantly lower among individuals with 16p11.2 duplications than their CNV-negative relatives, whereas intraclass correlations between the groups remained high for full-scale IQ and Social Responsiveness Scale-2 scores. CONCLUSION: The 16p11.2 duplication confers deleterious effects on cognition and social functioning, whereas familial background significantly influences phenotypic expression of these traits. Understanding variable expressivity in CNV disorders has implications for anticipatory clinical care, particularly for individuals who receive a genetic diagnosis at an early age, long before the full scope of manifestations becomes evident.


Asunto(s)
Deleción Cromosómica , Variaciones en el Número de Copia de ADN , Humanos , Variaciones en el Número de Copia de ADN/genética , Cognición , Fenotipo , Duplicación Cromosómica/genética
14.
Ann Clin Transl Neurol ; 9(12): 2025-2035, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36256512

RESUMEN

Bi-allelic variants in Iron-Sulfur Cluster Scaffold (NFU1) have previously been associated with multiple mitochondrial dysfunctions syndrome 1 (MMDS1) characterized by early-onset rapidly fatal leukoencephalopathy. We report 19 affected individuals from 10 independent families with ultra-rare bi-allelic NFU1 missense variants associated with a spectrum of early-onset pure to complex hereditary spastic paraplegia (HSP) phenotype with a longer survival (16/19) on one end and neurodevelopmental delay with severe hypotonia (3/19) on the other. Reversible or irreversible neurological decompensation after a febrile illness was common in the cohort, and there were invariable white matter abnormalities on neuroimaging. The study suggests that MMDS1 and HSP could be the two ends of the NFU1-related phenotypic continuum.


Asunto(s)
Paraplejía Espástica Hereditaria , Humanos , Fenotipo , Paraplejía Espástica Hereditaria/genética , Mutación Missense , Alelos , Hierro/metabolismo , Proteínas Portadoras/genética
15.
Clin Genet ; 102(6): 530-536, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35932216

RESUMEN

Biallelic pathogenic variants in the genes encoding the dolichol-phosphate mannose synthase subunits (DPM) which produce mannosyl donors for glycosylphosphatidylinositols, N-glycan and protein O- and C-mannosylation, are rare causes of congenital disorders of glycosylation. Pathogenic variants in DPM1 and DPM2 are associated with muscle-eye-brain (MEB) disease, whereas DPM3 variants have mostly been reported in patients with isolated muscle disease-dystroglycanopathy. Thus far, only one affected individual with compound heterozygous DPM3 variants presenting with myopathy, mild intellectual disability, seizures, and nonspecific white matter abnormalities (WMA) around the lateral ventricles has been described. Here we present five affected individuals from four unrelated families with global developmental delay/intellectual disability ranging from mild to severe, microcephaly, seizures, WMA, muscle weakness and variable cardiomyopathy. Exome sequencing of the probands revealed an ultra-rare homozygous pathogenic missense DPM3 variant NM_018973.4:c.221A>G, p.(Tyr74Cys) which segregated with the phenotype in all families. Haplotype analysis indicated that the variant arose independently in three families. Functional analysis did not reveal any alteration in the N-glycosylation pathway caused by the variant; however, this does not exclude its pathogenicity in the function of the DPM complex and related cellular pathways. This report provides supporting evidence that, besides DPM1 and DPM2, defects in DPM3 can also lead to a muscle and brain phenotype.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/patología , Homocigoto , Músculo Esquelético/patología , Encefalopatías/patología , Convulsiones/patología , Manosiltransferasas/genética , Proteínas de la Membrana/genética
16.
Ann Clin Transl Neurol ; 9(9): 1345-1358, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35880319

RESUMEN

OBJECTIVE: Intracellular signaling networks rely on proper membrane organization to control an array of cellular processes such as metabolism, proliferation, apoptosis, and macroautophagy in eukaryotic cells and organisms. Phosphatidylinositol 4-phosphate (PI4P) emerged as an essential regulatory lipid within organelle membranes that defines their lipid composition and signaling properties. PI4P is generated by four distinct phosphatidylinositol 4-kinases (PI4K) in mammalian cells: PI4KA, PI4KB, PI4K2A, PI4K2B. Animal models and human genetic studies suggest vital roles of PI4K enzymes in development and function of various organs, including the nervous system. Bi-allelic variants in PI4KA were recently associated with neurodevelopmental disorders (NDD), brain malformations, leukodystrophy, primary immunodeficiency, and inflammatory bowel disease. Here, we describe patients from two unrelated consanguineous families with PI4K2A deficiency and functionally explored the pathogenic mechanism. METHODS: Two patients with PI4K2A deficiency were identified by exome sequencing, presenting with developmental and epileptic-dyskinetic encephalopathy. Neuroimaging showed corpus callosum dysgenesis, diffuse white matter volume loss, and hypoplastic vermis. In addition to NDD, we observed recurrent infections and death at toddler age. We further explored identified variants with cellular assays. RESULTS: This clinical presentation overlaps with what was previously reported in two affected siblings with homozygous nonsense PI4K2A variant. Cellular studies analyzing these human variants confirmed their deleterious effect on PI4K2A activity and, together with the central role of PI4K2A in Rab7-associated vesicular trafficking, establish a link between late endosome-lysosome defects and NDD. INTERPRETATION: Our study establishes the genotype-phenotype spectrum of PI4K-associated NDD and highlights several commonalities with other innate errors of intracellular trafficking.


Asunto(s)
Epilepsia Generalizada , Antígenos de Histocompatibilidad Menor , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Epilepsia Generalizada/genética , Homocigoto , Humanos , Antígenos de Histocompatibilidad Menor/genética , Malformaciones del Sistema Nervioso/genética , Trastornos del Neurodesarrollo/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
17.
Genet Med ; 24(9): 1857-1866, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35639097

RESUMEN

PURPOSE: Penetrance estimates of Birt-Hogg-Dubé syndrome (BHD)-associated cutaneous, pulmonary, and kidney manifestations are based on clinically ascertained families. In a health care system population, we used a genetics-first approach to estimate the prevalence of pathogenic/likely pathogenic (P/LP) truncating variants in FLCN, which cause BHD, and the penetrance of BHD-related phenotypes. METHODS: Exomes from 135,990 patient-participants in Geisinger's MyCode cohort were assessed for P/LP truncating FLCN variants. BHD-related phenotypes were evaluated from electronic health records. Association between P/LP FLCN variants and BHD-related phenotypes was assessed using Firth's logistic regression. RESULTS: P/LP truncating FLCN variants were identified in 35 individuals (1 in 3234 unrelated individuals), 68.6% of whom had BHD-related phenotype(s), including cystic lung disease (65.7%), pneumothoraces (17.1%), cutaneous manifestations (8.6%), and kidney cancer (2.9%). A total of 4 (11.4%) individuals had prior clinical BHD diagnoses. CONCLUSION: In this health care population, the frequency of P/LP truncating FLCN variants is 60 times higher than the previously reported prevalence. Although most variant-positive individuals had BHD-related phenotypes, a minority were previously clinically diagnosed, likely because cutaneous manifestations, pneumothoraces, and kidney cancer were observed at lower frequencies than in clinical cohorts. Improved clinical recognition of cystic lung disease and education concerning its association with FLCN variants could prompt evaluation for BHD.


Asunto(s)
Síndrome de Birt-Hogg-Dubé , Quistes , Neoplasias Renales , Enfermedades Pulmonares , Neumotórax , Proteínas Proto-Oncogénicas/genética , Enfermedades de la Piel , Síndrome de Birt-Hogg-Dubé/complicaciones , Síndrome de Birt-Hogg-Dubé/epidemiología , Síndrome de Birt-Hogg-Dubé/genética , Quistes/complicaciones , Quistes/patología , Atención a la Salud , Humanos , Neoplasias Renales/complicaciones , Enfermedades Pulmonares/complicaciones , Enfermedades Pulmonares/patología , Fenotipo , Neumotórax/complicaciones , Neumotórax/genética , Enfermedades de la Piel/genética , Proteínas Supresoras de Tumor/genética
18.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379995

RESUMEN

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Asunto(s)
Hidrocefalia , Animales , Fenómenos Biomecánicos , Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Humanos , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/genética , Ratones , Neurogénesis/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Secuenciación del Exoma
19.
Mol Syndromol ; 12(1): 33-40, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33776625

RESUMEN

Tubulinopathies are a group of conditions caused by variants in 6 tubulin genes that present with a spectrum of brain malformations. One of these conditions is TUBB2A-related tubulinopathy. Currently, there are 9 reported individuals with pathogenic variants within the TUBB2A gene, with common manifestations including, but not limited to, global developmental delay, seizures, cortical dysplasia, and dysmorphic corpus callosum. We report 3 patients identified by exome and genome sequencing to have a novel, pathogenic, missense variant in TUBB2A (p.Gly98Arg). They presented similarly with intellectual disability, hypotonia, and global developmental delay and varied with respect to the type of cortical brain malformation, seizure history, diagnosis of autism spectrum disorder, and other features. This case series expands the natural history of TUBB2A-related tubulinopathy while describing the presentation of a novel, pathogenic, missense variant in 3 patients.

20.
JAMA ; 325(5): 467-475, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33528536

RESUMEN

Importance: Cerebral palsy is a common neurodevelopmental disorder affecting movement and posture that often co-occurs with other neurodevelopmental disorders. Individual cases of cerebral palsy are often attributed to birth asphyxia; however, recent studies indicate that asphyxia accounts for less than 10% of cerebral palsy cases. Objective: To determine the molecular diagnostic yield of exome sequencing (prevalence of pathogenic and likely pathogenic variants) in individuals with cerebral palsy. Design, Setting, and Participants: A retrospective cohort study of patients with cerebral palsy that included a clinical laboratory referral cohort with data accrued between 2012 and 2018 and a health care-based cohort with data accrued between 2007 and 2017. Exposures: Exome sequencing with copy number variant detection. Main Outcomes and Measures: The primary outcome was the molecular diagnostic yield of exome sequencing. Results: Among 1345 patients from the clinical laboratory referral cohort, the median age was 8.8 years (interquartile range, 4.4-14.7 years; range, 0.1-66 years) and 601 (45%) were female. Among 181 patients in the health care-based cohort, the median age was 41.9 years (interquartile range, 28.0-59.6 years; range, 4.8-89 years) and 96 (53%) were female. The molecular diagnostic yield of exome sequencing was 32.7% (95% CI, 30.2%-35.2%) in the clinical laboratory referral cohort and 10.5% (95% CI, 6.0%-15.0%) in the health care-based cohort. The molecular diagnostic yield ranged from 11.2% (95% CI, 6.4%-16.2%) for patients without intellectual disability, epilepsy, or autism spectrum disorder to 32.9% (95% CI, 25.7%-40.1%) for patients with all 3 comorbidities. Pathogenic and likely pathogenic variants were identified in 229 genes (29.5% of 1526 patients); 86 genes were mutated in 2 or more patients (20.1% of 1526 patients) and 10 genes with mutations were independently identified in both cohorts (2.9% of 1526 patients). Conclusions and Relevance: Among 2 cohorts of patients with cerebral palsy who underwent exome sequencing, the prevalence of pathogenic and likely pathogenic variants was 32.7% in a cohort that predominantly consisted of pediatric patients and 10.5% in a cohort that predominantly consisted of adult patients. Further research is needed to understand the clinical implications of these findings.


Asunto(s)
Parálisis Cerebral/genética , Secuenciación del Exoma , Mutación , Adolescente , Adulto , Parálisis Cerebral/complicaciones , Niño , Preescolar , Estudios Transversales , Femenino , Pruebas Genéticas , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Prevalencia , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...